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Nonlinear dielectric relaxation of polar molecules in a strong ac electric field:
Steady state response
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The nonlinear dielectric relaxation ac stationary response of an assembly of rigid polar molecules acted on
by strong superimposed externalBgand acE,(t) = E; coswt electric fields is evaluated in the context of the
noninertial rotational diffusion model. The calculation proceeds by expanding the relaxation furfgiions
(the expectation value of the Legendre polynomigl$, which describe the nonlinear relaxation of the system,
as a Fourier series in the time domain. Hence, an infinite hierarchy of recurrence equations for the Fourier
components off(t) is obtained. The exact solution of this hierarchy can be obtained in terms of a matrix
continued fraction, so allowing us to evaluate the ac nonlinear response. For a weak ac field our results are in
complete agreement with previous solutions obtained by perturbation methods. Diagrams showing the behavior
of the in-phase and out-of-phase components of the electric polarization are presented.

PACS numbd(s): 05.40.Jc, 77.22.Gm

[. INTRODUCTION due to mathematical difficulties encountered. Indeed, the
only application of the theory given in Refll] was an
The theory of electric polarization of dielectric fluids evaluation of the birefringence for a weak ac field superim-
plays an essential role in our understanding of electroopticgbosed on a weak dc bias field. Thus, the problem of the
relaxation phenomena. Originally this problem was treatedtalculation of the nonlinear response in high ac fields, where
by Debye[1] who calculated the linear dielectric response ofthe perturbation approaches are inapplicable, still remains
polar molecules to a weak ac electric field in the context ofunsolved. On the other hand, in recent pagé®-14 we
the noninertial rotational diffusion model. This linear re- have been able to calculate thenlinear responsédor the
sponse has the well-known representation in terms of thése, decay and rapidly rotating field transient dielectric re-
Debye equations for the complex dielectric susceptibility andaxation arising from sudden changes both in magnitude and
of the Cole-Cole diagrams, which are perfect semicirclesin direction of a strong external dc field. In order to obtain
The linear susceptibility is independent of the electric fieldthese results, we have used the approach developed in Refs.
strengthE. Several theoretical approaches have been prd-15] and[16] for the solution of infinite hierarchies aful-
posed to generalize the Debye theory in order to take intditerm recurrence equations. This approach is based on the
account nonlinear effects of dielectric relaxation of polar flu-matrix continued fraction technique and essentially consti-
ids in high electric fields, see for example Rdf2-8], and tutes a further development of Risken’'s continued fraction
references cited therein. These approaches usually comrmethod[17]. In the present paper we shall show how this
mence with the noninertial Langevin equation for the rota-approach can also be applied to the calculation of the non-
tional Brownian motion of a particle or with the correspond- linear ac stationary response of rigid polar molecules to an ac
ing Smoluchowski equation for the probability distribution field of arbitrary strength. This approach is, in some respects,
function W of orientations of the particles in configuration analogous to those used in REf8] for the calculation of the
space. The Smoluchowski equation can be solved, for exdarmonic mixing in a cosine potential and in REE9] for
ample, by expandingV in terms of a complete set of appro- the evaluation of the mean beat frequency of the dithered-
priate functions, usually as a series of spherical harmonicgng-laser gyroscope. However, the model used here and the
Y;m. This yields an infinite hierarchy of differential- solution so obtained differ from those of Reff$8] and[19].
recurrence relations for the moments—the expectation valMoreover, our solution has the merit of being considerably
ues of the spherical harmoni¢¥, ,)(t). [The underlying simpler than those previously available.
Langevin equation can also be reduced to this moment sys-
tem (without recourse to the Smolu_chowski equg}idly Il. GENERAL RELATIONS
means of an appropriate transformation of the variables and
by direct averaging of the stochastic equation so obtained We shall consider the nonlinear dielectric relaxation of an
[9].] Approximate solutions of this hierarchy have hitherto assembly of rigid polar symmetric top particleéaacromol-
only been obtained by using various perturbation methods icule$ dissolved in a nonpolar solvent and acted on by
the approximation when the energy of the dipolar moleculestrong external superimposed d&, and ac E(t)
in the external ac field iemuch) less than the thermal energy = E; coswt electric fields. Each particle contains a rigid elec-
KT. Furthermore, Morit410] and Morita and Watanaljd1] tric dipole u directed along the axis of symmetry. Let us also
proposed a general formal theory of nonlinear response arisuppose for simplicity that bot, andE; are directed along
ing from the transient and stationary processes for systentbe Z axis of the laboratory coordinate system and that ef-
which dynamics is governed by the Smoluchowski equationfects due to the anisotropy of the polarizability of the par-
However, this theory is very difficult to apply to relaxation ticles can be neglected. Then the noninertial rotational
problems in the presence of an ac field of arbitrary strengtBrownian motion of the particles may be described by the
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Smoluchowski equation for the probability distribution func- However, for the ac nonlinear response, the account of the

tion W(9,t) of the orientations of the dipoles in configura- internal field effects is a very difficult problem. Nevertheless,

tion spacd1,2] this problem may be ignored for electrically diluted systems
in first approximation.

J J
ZTDEW(ﬂ,t)Z Siﬂﬁ(—W(l‘},t)

sing 99 v IIl. MATRIX CONTINUED FRACTION SOLUTION OF
EQ. (3
W(9,t) a9 Q@
KT ﬁv(ﬁ’t) ' 1) Since we are solely concerned with the ac response cor-

responding to the stationary state, which is independent of
where 9 is the angle between the axis of symmetry of thethe initial conditions, we may seek all ttig(t) in the form
molecule and th& axis of the laboratory coordinate system, of a Fourier series, viz.,
7p is the usual Debye relaxation time,

V(9,t)=— u[Eo+E;(t)]cosd ) fn(t)=k;m Fr(w)eke!, ®

is the orientational potential energy of the molecllés the
Boltzmann constanfl is the temperature, and is the per-
manent dipole moment. The problem we want to solve i
intrinsically nonlinear because we assume that the magni- FN = (FD)* 9)
tudes of both ac and dc fields are large enough so that the K Ko

energy of the molecule in these fields may be comparable gghere the asterisk denotes the complex conjugate.
higher thankT. On substituting Eq(8) into Eq. (3), we have the follow-

On expanding/N(9,t) as a series of Legendre polynomi- ing recurrence relations for the Fourier amplitudg¥ ),
alsP,(cos¥) and using Eq(1), one can obtain the following namely:

set of differential-recurrence equatiofesg., Refs[1,2]):

n(n+1)

As all the f,(t) are real, the Fourier amplitudds; must
Ssatisfy the following condition:

Zy k(@) FR(@) = 2&[FR Hw)—FR Y w)]

Toge (D) 5 all) — I Hw) + Fl (@)~ Fi i)~ Fi H(0)]
n(n+1) f . =0, (10
—§(t)m[ 1O =], Q) where
wheref,(t) denotes the expectation value of the Legendre 2iwrpk
polynomial of ordem, namely, Znk(w)=2(2n+1)| 1+ . (11
n(n+1)
fo(t)=(Pp(cosd))(t)= prn(cosﬁ)w(ﬁ,t)sinﬁdﬁ, The solution of Eq(10) can be obtained in terms of ma-
0 trix continued fractions as follows. Let us introduce the col-

(4)  umn vectorsC,(w) andR:

and {(t) is a dimensionless field parameter which may be

separated into two parts as follows: F"(w) 0
{(t) =&+ & coswt, (5) F2i(w) &
Co(w)=| Fo(w) | andR=| 2&
_MEo kB Fl(0) ¢
§0_ kT ’ ‘5_ KT . (6)

Fa() 0
We note that Eq(3) has also been derived in Ref8,12,14 : :

directly from the underlying vector Euler-Langevin equation[AS is obvious from its definition, the vect@@, contains all

in the nonirllertial Iimitl. h , ¢ hthe Fourier amplitudes df;(t), which are necessary for ob-
Our goal is to evaluate the ac stationary response of thgyining the ac nonlinear dielectric resporisenen theseven-
electric polarizatiorP(t) [1,2], which is defined as term recurrence Eq(10) can be transformed into thmatrix

P(t)Z,LLN0<COSH>(t):,LLNOf1(t), 7) three-termrecurrence equations

whereNg is the concentration of polar molecules. Here the Qu(@)Cy(@) +aCx(w) =R, (12
internal field effects are not taken into account. This means

; C +qC =qC,_ , N=273,...,
that the effects of long-range torques due to the connection Qn(@)Cnl(@) +4Ch1(@) =qCp-a(@) (13)
between the average moments and the Maxwell fields are not
taken into account. A treatment of these effects for the statisvhereq andQ,(w) are tridiagonal and diagonal infinite ma-
nonlinear dielectric increment has been given by FU[R3]. trices, respectively, defined as
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0
§ 26 & 0 O
q= 0 ¢ 26 & O (14)
0 0 & 26 ¢
0 0 0 & 2§
and )
Z, —2(w) 0 0 0 0
0 Zy - 1(w) 0 0 0
Qn(w)= 0 0 Zno( ) 0 , (15)
0 0 0 Zy1(w) 0
0 0 0 0 Z, ()
|
wherez, (o) is given by Eq.(11). pose of computatiovarious algorithms for calculating ma-

Insofar as we are interested in the determinatio€ (fw) trix continued fractions are discussed in Rgf7] Chap. 9.
only, the infinite system of Eq$12) and(13) can readily be As far as the calculation of the infinite matrix continued frac-
solved in terms of matrix continued fractions6,17. Thus, tion Sis concerned, we approximated it by some matrix con-
we obtain tinued fraction of finite ordefby putting Q,,=0 at somen

Cy(w)=S(w)R, (16) = N)_. At the same time we c_onfined the dimensions of the
matricesQ,, andq to some finite numbek. Both N and M
where the infinite matrix continued fractidis given by depend on the field parametefsé, and on the number of
| harmonics to be determined. They must be chosen taking
S(w)= (17)  account of the desired degree of accuracy of the calculation.
Qu(w) + | For example, for the calculation Ef,}(w) up tok=7 and for
! q I d & and &, up to 20, the dimension of, and q need not
Qz(w)J“qu exceed 50 and 15—20 iterations in calculatBi@re enough
to arrive at an accuracy of not less than six significant digits
(the fraction lines designate the matrix inversipasd| is  in the majority of cases.
the identity matrix of infinite dimension. Let us first of all consider main features of the ac nonlin-

Having determined the column vect@;(w) from Eq. ear response in the absence of the dc bias field, i.e{for

(16), one can calculate the stationary ac response functior0. The low (@—0) and high @—«) frequency

f1(t), which may be presented as follows: asymptotic behavior of the Fourier componeR{{w) may
w be evaluated from the recurrence relatioh0). These
fi(t)=FXw)+2> ReFi(w)eky. (18  asymptotic estimates féF(w) atk=1, 3, 5, and 7 are sum-
k=1 marized in Table I. Equations for the low frequency behavior

1 , ) . . . of Fi(w) presented in Table | were obtained by using the
TheFg(w) in the right hand side of EJ18) is a time inde-  peryyrhation expansion 6f:(w) in powers ofé so that they
pendent, but frequency dependent term. This frequency deg.q \qiig foré<1 only. The high frequency asymptotic ex-
pendence is due to the coupling effect of the dc lEigand pansions ofFi(w) were derived by assuming arbitragy
ac Eq(t) fields.. In the absgnce of the dc bias field, i.e., forthus they arekapplicable to argy This may be explained by
g%: 0, the serieg18) contains only the odd components of the fact that in the limitw— o the dipole polarization plays
F\ (all the even components are equal to zemd reduces , (ole as the dipoles are “frozen” due to viscosity of the

to solution and they have no time to follow the changes of the
* _ ac field independently of the strength of the ac field.
fl(t)zzkzl Re[F3,_1(w)e' (k- Dety (19 The results of the calculation of the real and imaginary

parts of the normalized nonlinear harmonic components of
the electric polarization varying i, 3w, and v, viz.,

IV. RESULTS AND DISCUSSION L e L e 5
X1(@)=6F1" (w)/£,x3(w)=360F5" (w)/ &7,

The exact matrix continued fraction solutiohEgs. (16)
and (17)] we have obtained is very convenient for the pur-and
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TABLE I. The low and high frequency behavior of the Fourier componéti(so) for £=0.

wp<l, £€<1 wTp—°, &any
=(FD* w§[1+iwr +0(?)]+0(8) ~i(1+im )
! 6 o D 627 D
& 14, £ 17
=(F%)* %—% 1+ 3 IwTD+O(w27'% )+O(§5) 720&)4 =7 +IwTD
& 41 IS 299
1 _ 1y % ~ s 2.2 7 _ _
F-s=(F3) 15120 1+ 7 iwrp+O(w7g) | +0O(&7) 80 6401)676 ( 60 +Iw7‘D)
& (1 266 0 & 3179
“(FY*  ~goason 1T 15 @0t O D) | £OE)  ~greanan | aog Tiem
Xs(0)=15120F* (w)/ & sponse may lead to different behavior &f. The frequency

behavior of the third harmonic componerif( ) is shown in
are presented in Figs. 1-@he normalization was chosen in Figs. 3 and 4. Fog<1, the real part of the @ component
order to sa’usfy the cond|t|ob(1(0)|—1 até—0.) The spec- (Fig. 3 starts from—1 at low frequencies, then reaches a
tra of Regxj(w)} (dispersion and In{xj(w)} (absorptionand  positive maximum atwr,~0.77 before decreasing mono-
the corresponding Cole-Cole diagram of the first harmoniconically to 0 whenw tends to«. The spectrum becomes
component are shown in Figs. 1 and 2. Here it is clearly seemore and more flattened @sincreases. The imaginary part
how the relaxation spectrum ofj(w) at é&<1 (linear re-  of the 3w componentFig. 4) passes through a negative mini-
sponsgis transformed to the nonlinear response spectrum ifnum at w7p~0.26 for £<1. This minimum is shifted to
high fields: with increasing of the absorption and disper- higher frequencies and its absolute value decreases with in-
sion curves are shifted to higher frequencies with decreasingreasingg_ An analogous behavior in the frequency domain
of the amplitude due to the saturation. A saturation levelas that presented for the harmonic of rankcan be ob-
seems tO be reached &t-5, where all the Fourier compo- served foryi(w) (fifth harmonig with the exception that
nentsF(w) become comparable in the order of magnitudenow both the real and imaginary parts are positive. As ex-
(see Table)l Moreover, one can note that the half-width of pected, the increasing of the ac field strength results in the
the spectra Ifx;(w)} enlargesFig. 1) as¢ increases. Defin-  saturation of all the Fourier components considered. All
ing the phase anglé; between in-phase and out-of-phase higher harmonics may be investigated in a similar way.

components oﬁ(}(w) as At small ac fields €<0.5) and at,=0, the results of our
. 1 1 calculations are in full agreement with the perturbation solu-
6, =tan"“(Im{x1(w)}/Re{xi(®)}), tion for the first and third harmonics previously obtained by

Coffey and Paranjapi], viz.,
one can remarkKFig. 2) that the asymptotic limit off;(w y Jape2]

—m) is equal torr/2 regardless of the value &f This is so

because neither the polarizability nor the inertia of the mol- 1+iwm 27— 13w’ 3 +iwTp(42+ 20%73)
ecules was taken into account here. The account of the in-yi(w)= 17022 —¢& T AT
duced moment and the inertia effect contributions to the re- @ 7o o1+ w77p)( @ 7o

+0(&%, (20
1 1-£50
0.5 PIEEYS
3 3-¢=5
0.4 4-£=10
5-£=20

log,(Re{z'}), log,(Im{z'})

Im{z,"}
/
//

JeoN N
IR

logw(a) 7,) 0.0 T
0.0 0.2 0.4 06 0.8 1.0
FIG. 1. logoRe{xi(w)} (solid lineg and logoIm{xi(w)} (filled Re{z,'}
circles as a function of logy( wp) for various values ot. Curves
1 correspond to the linear response. Note that all the curves merge FIG. 2. Cole-Cole diagram foﬁ(w) at various values of.
in a single asymptote in the high frequency region-o). Curve 1(semicircle corresponds to the linear response.
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-1.0 Re{)(%}

0

-1 logo(wTp)

) loglo(wTD)

FIG. 3. Réya! (third harmonic componeptas a function of

logy(w7p) andé. FIG. 5. Rdxs} (fifth harmonic componentas a function of
log;o(wmp) andé.

3- 17w27'%+ iwTp(14— 6w27'%)
+0(&9).

1 —
Xs(@)==3 (1+ 0?m5)(9+ 402 m5)(1+9w?1)) to zero(cf. Figs. 1 and 2 However, the increase of the bias
(21)  field parameters, results in a further decrease of the re-
) ) ) sponse and in its shift to higher frequencies. The half-width
One can readily see that the asymptotic estimate&6m) Im{x3} enlarges with increasing, as well. One can also
and F%(w) presented in Tablg I agree in all respe_cts Withgae in Figs. 7—10 that the decrease o{ﬁ}eand |”{Xﬂ with
Egs.(20) and(21). For £#0 similar, but more complicated j,creasing the amplitude of the dc bias field is in several
equations have also been derived in Ref.and later have  {jnas more than that due to the ac field. For a small ac field
b_een extended in Ref$3—6]_ in order to take into account (¢<1) superimposed to a strong dc bias fielg¢ 1), our
higher perturbation expansion terms. results are in complete agreement with those of R&F.

In order to demonstrate how the dc bias fiélg affects  \ here the ac nonlinear response has been investigated by
the ac nonllnea_r response, we present herg, as an examptlg,ing the perturbation approach. The above conclusions in
the first harmonic component(w) as a function of the bias relation with these dc field effects can also be applied to
field parameteg,. The main features of this dc bias field higher harmonics.
effect are shown in FIgS 7 and 8, where the real and imagi' In Conc|usion, the present theory may be app“ed to the
nary parts ofyj(w) are plotted as functions afand &, for  interpretation of experimental data on nonlinear dielectric
wrp=1, and in Figs. 9 and 10, where the spectra ofyRe relaxation. We remark that until now two kinds of nonlinear
and In{Xﬂ are presented for€9¢,=<10 andé=5. As one response experiments have been carried out, namely, where
can see in these figures, the nonlinear effects arising from the) either a strong ac field alor{éor example, Refs[21,22)
increasing of the amplitudéof the ac field coupled with the or (ii) a weak ac field superimposed on a strong dc bias field
dc bias fieldE, are very similar to those whef, is set equal  (e.g., Refs[23-25) were applied to the dielectric liquids.

logo(wTp)

10 1 log,o(wtp)

FIG. 4. The same as in Fig. 3 for {is). FIG. 6. The same as in Fig. 3 for {iyt}.
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logo(wTp)

1070 10
. _ FIG. 9. Rdxj} as a function of logw7p) and &, for é=5
FIG. 7. RQX]} as a function OE and §0 for (DTD::I.. (Strong nonlinear regin)e

Although the applied fields in these ex_periments were highyere only obtained for the shotpicosecond time scale,
enough E&10°V/m) to observe nonlinear effects, the \hich corresponds to the frequency range, where the model
strengths of the fields were still weak to allow one to use th§,nder consideration is not applicaliie is valid in the low
nonlinear response equations obtained in the context of thﬁequency region onlywrp<1) as inertial effects are ig-
perturbation approach. Comparison of the experimental daigored. In order to take into account the inertia of the mol-
with the results of the perturbation thed@-5] has demon-  gcyles and to extend the area of the applicability of the
strated[23,24,2§ that they are in agreement. Thus, the re-theory to higher frequencies one should consider the inertial
sults predicted by the theory developed here are also in aggkker-Planck equation for the rotational Brownian motion
cordance with those experimental data. As the theoryy phase space. This will allow us to consider the nonlinear
presented is applicable to arbitrary ac field strengths, it als@ffect in the whole frequency range of dipolar polarization

provides a theoretical basis for comparison with nonlineagyp to ~5 THz). We are going to extend our approach in that
response experiments in high fields, where the perturbatiofjrection elsewhere.

methods are no longer valid. It should be noted that some Thys, in the context of the noninertial rotational diffusion
molecular dynamics simulation data for systems of dipolaimogel the steady state ac nonlinear response of an ensemble
molecules in strong ac fields are also availatdey., Ref. of rigid polar molecules in strong superimposed ac and dc
[27]). The use of computer expe_nment data is preferable fohias fields can be evaluated from E¢s6) and(17) in terms
testing a nonlinear theory as it is much easian in real  of 4 matrix continued fraction. The method of the solution of
experiments to achieve values of the nonlinear parameterinfinite hierarchies ofmultiterm recurrence relations based
¢=1. For example, Evan7] reported the computer simu- on matrix continued fractions, which we have presented, is
lation data on the orientational relaxation of dipolar mol- quite general and can also be used for calculating stationary
ecules in a strong ac field &t 12. Unfortunately, these data spjutions of analogous nonlinear response problems, where

100 "o

FIG. 8. The same as in Fig. 7 for {y}. FIG. 10. The same as in Fig. 9 for {ii.
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time-dependent stimuli in high ac external fields are considtical one. In the context of this dynamic description, the be-
ered in the context of the Brownian motion of a particle in anhavior of the particle is governed by the following equation
external potential. For example, the approach presented c&80,31]:
also be applied to the calculation of the dynamic Kerr effect
ac response opolar and anisotropically polarizablemol-
eculeg 6] and to the evaluatiof28] of the nonlinear imped-
ance of a microwave-driven Josephson junciid6,29 (as . . .

) . which has an analytical solution
known, the dynamics of these systems is governed by very

& coswt

ZTD

I(t)=— sind(t),

-1

similar recurrence equations £ 5(0)
Note added in proofSome time after this paper was sent cosg(t)=2 1+exp{ — > sinwt|tar? _} -1,
for publication, Professor Yu. L. Raikher brought our atten- WTp 2

tion to the publicationg30,31], where the problem of the
dynamic Kerr effect ofigid dipolar molecules in a strong ac depending on the initial orientation of the partia¥0). As-
electric field was treated by means of a numerical solution ouming that at=0 the particles were oriented randomly, we
Eq. (3) for £,=0, which is the particular case of our prob- find, just as was done fdiP,(cos®))(t) in [30,31], a simple
lem. As is well known, the analysis of the measurements okquation for{cosd)(t) in Eq. (7), viz.,
the ac results of Ref$30] and[31] [where the expectation

value of the second Legendre polynom{iBh(cosd))(t) was (cosd)(t)=cothz(t) — i
evaluated may be considered to those obtained in the sinkrz(t)
present paper. Furthermore, an analytical method, which was _ .

developed in[30,31] for the evaluation of the asymptotic "WHereZ(t)=(&2wm)/sinwt.
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