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Nonlinear dielectric relaxation of polar molecules in a strong ac electric field:
Steady state response

J. L. Déjardin and Yu. P. Kalmykov
Centre d’Études Fondamentales, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

~Received 6 July 1999!

The nonlinear dielectric relaxation ac stationary response of an assembly of rigid polar molecules acted on
by strong superimposed external dcE0 and acE1(t)5E1 cosvt electric fields is evaluated in the context of the
noninertial rotational diffusion model. The calculation proceeds by expanding the relaxation functionsf n(t)
~the expectation value of the Legendre polynomialsPn), which describe the nonlinear relaxation of the system,
as a Fourier series in the time domain. Hence, an infinite hierarchy of recurrence equations for the Fourier
components off n(t) is obtained. The exact solution of this hierarchy can be obtained in terms of a matrix
continued fraction, so allowing us to evaluate the ac nonlinear response. For a weak ac field our results are in
complete agreement with previous solutions obtained by perturbation methods. Diagrams showing the behavior
of the in-phase and out-of-phase components of the electric polarization are presented.

PACS number~s!: 05.40.Jc, 77.22.Gm
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I. INTRODUCTION

The theory of electric polarization of dielectric fluid
plays an essential role in our understanding of electroopt
relaxation phenomena. Originally this problem was trea
by Debye@1# who calculated the linear dielectric response
polar molecules to a weak ac electric field in the context
the noninertial rotational diffusion model. This linear r
sponse has the well-known representation in terms of
Debye equations for the complex dielectric susceptibility a
of the Cole-Cole diagrams, which are perfect semicirc
The linear susceptibility is independent of the electric fie
strengthE. Several theoretical approaches have been p
posed to generalize the Debye theory in order to take
account nonlinear effects of dielectric relaxation of polar fl
ids in high electric fields, see for example Refs.@2–8#, and
references cited therein. These approaches usually c
mence with the noninertial Langevin equation for the ro
tional Brownian motion of a particle or with the correspon
ing Smoluchowski equation for the probability distributio
function W of orientations of the particles in configuratio
space. The Smoluchowski equation can be solved, for
ample, by expandingW in terms of a complete set of appro
priate functions, usually as a series of spherical harmo
Yl ,m . This yields an infinite hierarchy of differential
recurrence relations for the moments—the expectation
ues of the spherical harmonics^Yl ,m&(t). @The underlying
Langevin equation can also be reduced to this moment
tem ~without recourse to the Smoluchowski equation! by
means of an appropriate transformation of the variables
by direct averaging of the stochastic equation so obtai
@9#.# Approximate solutions of this hierarchy have hither
only been obtained by using various perturbation method
the approximation when the energy of the dipolar molec
in the external ac field is~much! less than the thermal energ
kT. Furthermore, Morita@10# and Morita and Watanabe@11#
proposed a general formal theory of nonlinear response
ing from the transient and stationary processes for syst
which dynamics is governed by the Smoluchowski equati
However, this theory is very difficult to apply to relaxatio
problems in the presence of an ac field of arbitrary stren
PRE 611063-651X/2000/61~2!/1211~7!/$15.00
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due to mathematical difficulties encountered. Indeed,
only application of the theory given in Ref.@11# was an
evaluation of the birefringence for a weak ac field superi
posed on a weak dc bias field. Thus, the problem of
calculation of the nonlinear response in high ac fields, wh
the perturbation approaches are inapplicable, still rema
unsolved. On the other hand, in recent papers@12–14# we
have been able to calculate thenonlinear responsefor the
rise, decay and rapidly rotating field transient dielectric
laxation arising from sudden changes both in magnitude
in direction of a strong external dc field. In order to obta
these results, we have used the approach developed in
@15# and @16# for the solution of infinite hierarchies ofmul-
titerm recurrence equations. This approach is based on
matrix continued fraction technique and essentially con
tutes a further development of Risken’s continued fract
method@17#. In the present paper we shall show how th
approach can also be applied to the calculation of the n
linear ac stationary response of rigid polar molecules to an
field of arbitrary strength. This approach is, in some respe
analogous to those used in Ref.@18# for the calculation of the
harmonic mixing in a cosine potential and in Ref.@19# for
the evaluation of the mean beat frequency of the dither
ring-laser gyroscope. However, the model used here and
solution so obtained differ from those of Refs.@18# and@19#.
Moreover, our solution has the merit of being considera
simpler than those previously available.

II. GENERAL RELATIONS

We shall consider the nonlinear dielectric relaxation of
assembly of rigid polar symmetric top particles~macromol-
ecules! dissolved in a nonpolar solvent and acted on
strong external superimposed dcE0 and ac E1(t)
5E1 cosvt electric fields. Each particle contains a rigid ele
tric dipolem directed along the axis of symmetry. Let us al
suppose for simplicity that bothE0 andE1 are directed along
the Z axis of the laboratory coordinate system and that
fects due to the anisotropy of the polarizability of the pa
ticles can be neglected. Then the noninertial rotatio
Brownian motion of the particles may be described by
1211 ©2000 The American Physical Society
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Smoluchowski equation for the probability distribution fun
tion W(q,t) of the orientations of the dipoles in configur
tion space@1,2#

2tD

]

]t
W~q,t !5

1

sinq

]

]q FsinqS ]

]q
W~q,t !

1
W~q,t !

kT

]

]q
V~q,t ! D G , ~1!

whereq is the angle between the axis of symmetry of t
molecule and theZ axis of the laboratory coordinate system
tD is the usual Debye relaxation time,

V~q,t !52m@E01E1~ t !#cosq ~2!

is the orientational potential energy of the molecule,k is the
Boltzmann constant,T is the temperature, andm is the per-
manent dipole moment. The problem we want to solve
intrinsically nonlinear because we assume that the ma
tudes of both ac and dc fields are large enough so that
energy of the molecule in these fields may be comparabl
higher thankT.

On expandingW(q,t) as a series of Legendre polynom
alsPn(cosq) and using Eq.~1!, one can obtain the following
set of differential-recurrence equations~e.g., Refs.@1,2#!:

tD

d

dt
f n~ t !1

n~n11!

2
f n~ t !

5z~ t !
n~n11!

2~2n11!
@ f n21~ t !2 f n11~ t !#, ~3!

where f n(t) denotes the expectation value of the Legen
polynomial of ordern, namely,

f n~ t !5^Pn~cosq!&~ t !5E
0

p

Pn~cosq!W~q,t !sinqdq,

~4!

and z(t) is a dimensionless field parameter which may
separated into two parts as follows:

z~ t !5j01j cosvt, ~5!

j05
mE0

kT
, j5

mE1

kT
. ~6!

We note that Eq.~3! has also been derived in Refs.@9,12,14#
directly from the underlying vector Euler-Langevin equati
in the noninertial limit.

Our goal is to evaluate the ac stationary response of
electric polarizationP(t) @1,2#, which is defined as

P~ t !5mN0^cosu&~ t !5mN0f 1~ t !, ~7!

whereN0 is the concentration of polar molecules. Here t
internal field effects are not taken into account. This me
that the effects of long-range torques due to the connec
between the average moments and the Maxwell fields are
taken into account. A treatment of these effects for the st
nonlinear dielectric increment has been given by Fulton@20#.
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However, for the ac nonlinear response, the account of
internal field effects is a very difficult problem. Nevertheles
this problem may be ignored for electrically diluted syste
in first approximation.

III. MATRIX CONTINUED FRACTION SOLUTION OF
EQ. „3…

Since we are solely concerned with the ac response
responding to the stationary state, which is independen
the initial conditions, we may seek all thef n(t) in the form
of a Fourier series, viz.,

f n~ t !5 (
k52`

`

Fk
n~v!eikvt. ~8!

As all the f n(t) are real, the Fourier amplitudesFk
n must

satisfy the following condition:

F2k
n 5~Fk

n!* , ~9!

where the asterisk denotes the complex conjugate.
On substituting Eq.~8! into Eq. ~3!, we have the follow-

ing recurrence relations for the Fourier amplitudesFk
n(v),

namely:

zn,k~v!Fk
n~v!22j0@Fk

n21~v!2Fk
n11~v!#

2j@Fk21
n21~v!1Fk11

n21~v!2Fk21
n11~v!2Fk11

n11~v!#

50, ~10!

where

zn,k~v!52~2n11!F11
2ivtDk

n~n11!G . ~11!

The solution of Eq.~10! can be obtained in terms of ma
trix continued fractions as follows. Let us introduce the c
umn vectorsCn(v) andR:

Cn~v!5S ]

F22
n ~v!

F21
n ~v!

F0
n~v!

F1
n~v!

F2
n~v!

]

D and R5S ]

0
j

2j0

j
0
]

D .

@As is obvious from its definition, the vectorC1 contains all
the Fourier amplitudes off 1(t), which are necessary for ob
taining the ac nonlinear dielectric response.# Then theseven-
term recurrence Eq.~10! can be transformed into thematrix
three-termrecurrence equations

Q1~v!C1~v!1qC2~v!5R, ~12!

Qn~v!Cn~v!1qCn11~v!5qCn21~v!, n52,3,...,
~13!

whereq andQn(v) are tridiagonal and diagonal infinite ma
trices, respectively, defined as
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q5S � ] ] ] ] ] �

¯ 2j0 j 0 0 0 ¯

¯ j 2j0 j 0 0 ¯

¯ 0 j 2j0 j 0 ¯

¯ 0 0 j 2j0 j ¯

¯ 0 0 0 j 2j0 ¯

� ] ] ] ] ] �

D ~14!

and

Qn~v!5S � ] ] ] ] ] �

¯ zn,22~v! 0 0 0 0 ¯

¯ 0 zn,21~v! 0 0 0 ¯

¯ 0 0 zn,0~v! 0 0 ¯

¯ 0 0 0 zn,1~v! 0 ¯

¯ 0 0 0 0 zn,2~v! ¯

� ] ] ] ] ] �

D , ~15!
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wherezn,k(v) is given by Eq.~11!.
Insofar as we are interested in the determination ofC1(v)

only, the infinite system of Eqs.~12! and~13! can readily be
solved in terms of matrix continued fractions@16,17#. Thus,
we obtain

C1~v!5S~v!R, ~16!

where the infinite matrix continued fractionS is given by

S~v!5
I

Q1~v!1q
I

Q2~v!1q
I

Q3~v!1¯

q

q

~17!

~the fraction lines designate the matrix inversions! and I is
the identity matrix of infinite dimension.

Having determined the column vectorC1(v) from Eq.
~16!, one can calculate the stationary ac response func
f 1(t), which may be presented as follows:

f 1~ t !5F0
1~v!12(

k51

`

Re$Fk
1~v!eikvt%. ~18!

The F0
1(v) in the right hand side of Eq.~18! is a time inde-

pendent, but frequency dependent term. This frequency
pendence is due to the coupling effect of the dc biasE0 and
ac E1(t) fields. In the absence of the dc bias field, i.e.,
j050, the series~18! contains only the odd components
Fk

n ~all the even components are equal to zero! and reduces
to

f 1~ t !52(
k51

`

Re$F2k21
1 ~v!ei ~2k21!vt%. ~19!

IV. RESULTS AND DISCUSSION

The exact matrix continued fraction solution@Eqs. ~16!
and ~17!# we have obtained is very convenient for the pu
n

e-

r

-

pose of computation~various algorithms for calculating ma
trix continued fractions are discussed in Ref.@17# Chap. 9!.
As far as the calculation of the infinite matrix continued fra
tion S is concerned, we approximated it by some matrix co
tinued fraction of finite order~by putting Qn50 at somen
5N). At the same time we confined the dimensions of t
matricesQn andq to some finite numberM. Both N andM
depend on the field parametersj, j0 and on the number o
harmonics to be determined. They must be chosen tak
account of the desired degree of accuracy of the calculat
For example, for the calculation ofFk

1(v) up tok57 and for
j and j0 up to 20, the dimension ofQn and q need not
exceed 50 and 15–20 iterations in calculatingS are enough
to arrive at an accuracy of not less than six significant dig
in the majority of cases.

Let us first of all consider main features of the ac nonl
ear response in the absence of the dc bias field, i.e., foj0
50. The low (v→0) and high (v→`) frequency
asymptotic behavior of the Fourier componentsFk

1(v) may
be evaluated from the recurrence relation~10!. These
asymptotic estimates forFk

1(v) at k51, 3, 5, and 7 are sum
marized in Table I. Equations for the low frequency behav
of Fk

1(v) presented in Table I were obtained by using t
perturbation expansion ofFk

1(v) in powers ofj so that they
are valid forj!1 only. The high frequency asymptotic ex
pansions ofFk

1(v) were derived by assuming arbitraryj,
thus they are applicable to anyj. This may be explained by
the fact that in the limitv→` the dipole polarization plays
no role as the dipoles are ‘‘frozen’’ due to viscosity of th
solution and they have no time to follow the changes of
ac field independently of the strength of the ac field.

The results of the calculation of the real and imagina
parts of the normalized nonlinear harmonic components
the electric polarization varying inv, 3v, and 5v, viz.,

x1
1~v!56F1

1* ~v!/j,x3
1~v!5360F3

1* ~v!/j3,

and



1214 PRE 61J. L. DÉJARDIN AND YU. P. KALMYKOV
TABLE I. The low and high frequency behavior of the Fourier componentsFn
k(v) for j50.

vtD!1, j!1 vtD→`, j any

F21
1 5(F1

1)* '
j

6
@11ivtD1O~v2tD

2 !#1O~j3! ;
j

6v2tD
2 ~11ivtD!

F23
1 5(F3

1)* '2
j3

360S 11
14

3
ivtD1O~v2tD

2 ! D1O~j5! ;
j3

720v4tD
4 S 17

6
1 ivtDD

F25
1 5(F5

1)* '
j5

15 120S 11
41

4
ivtD1O~v2tD

2 ! D1O~j7! ;
j5

80 640v6tD
6 S 299

60
1 ivtDD

F27
1 5(F7

1)* '2
j7

604 800S 11
266

15
ivtD1O~v2tD

2 ! D1O~j9! ;
j7

9 676 800v8tD
8 S 3179

420
1 ivtDD
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x5
1~v!515 120F5

1* ~v!/j5

are presented in Figs. 1–6.~The normalization was chosen i
order to satisfy the conditionuxn

1(0)u51 atj→0.) The spec-
tra of Re$x1

1(v)% ~dispersion! and Im$x1
1(v)% ~absorption! and

the corresponding Cole-Cole diagram of the first harmo
component are shown in Figs. 1 and 2. Here it is clearly s
how the relaxation spectrum ofx1

1(v) at j!1 ~linear re-
sponse! is transformed to the nonlinear response spectrum
high fields: with increasing ofj the absorption and disper
sion curves are shifted to higher frequencies with decrea
of the amplitude due to the saturation. A saturation le
seems to be reached atj;5, where all the Fourier compo
nentsFk

1(v) become comparable in the order of magnitu
~see Table I!. Moreover, one can note that the half-width
the spectra Im$x1

1(v)% enlarges~Fig. 1! asj increases. Defin-
ing the phase angleu1 between in-phase and out-of-pha
components ofx1

1(v) as

u15tan21~ Im$x1
1~v!%/Re$x1

1~v!%!,

one can remark~Fig. 2! that the asymptotic limit ofu1(v
→`) is equal top/2 regardless of the value ofj. This is so
because neither the polarizability nor the inertia of the m
ecules was taken into account here. The account of the
duced moment and the inertia effect contributions to the

FIG. 1. log10 Re$x1
1(v)% ~solid lines! and log10 Im$x1

1(v)% ~filled
circles! as a function of log10(vtD) for various values ofj. Curves
1 correspond to the linear response. Note that all the curves m
in a single asymptote in the high frequency region (v→`).
c
n
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g
l
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sponse may lead to different behavior ofu1 . The frequency
behavior of the third harmonic componentx3

1(v) is shown in
Figs. 3 and 4. Forj!1, the real part of the 3v component
~Fig. 3! starts from21 at low frequencies, then reaches
positive maximum atvtD'0.77 before decreasing mono
tonically to 0 whenv tends to`. The spectrum become
more and more flattened asj increases. The imaginary pa
of the 3v component~Fig. 4! passes through a negative min
mum at vtD'0.26 for j!1. This minimum is shifted to
higher frequencies and its absolute value decreases with
creasingj. An analogous behavior in the frequency doma
~as that presented for the harmonic of rank 3! can be ob-
served forx5

1(v) ~fifth harmonic! with the exception that
now both the real and imaginary parts are positive. As
pected, the increasing of the ac field strength results in
saturation of all the Fourier components considered.
higher harmonics may be investigated in a similar way.

At small ac fields (j<0.5) and atj050, the results of our
calculations are in full agreement with the perturbation so
tion for the first and third harmonics previously obtained
Coffey and Paranjape@2#, viz.,

x1
1~v!5

11 ivtD

11v2tD
2 2j2

27213v2tD
2 1 ivtD~4212v2tD

2 !

60~11v2tD
2 !~914v2tD

2 !

1O~j4!, ~20!

ge FIG. 2. Cole-Cole diagram forx1
1(v) at various values ofj.

Curve 1~semicircle! corresponds to the linear response.
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x3
1~v!523

3217v2tD
2 1 ivtD~1426v2tD

2 !

~11v2tD
2 !~914v2tD

2 !~119v2tD
2 !

1O~j2!.

~21!

One can readily see that the asymptotic estimates forF1
1(v)

and F3
1(v) presented in Table I agree in all respects w

Eqs.~20! and~21!. For j0Þ0 similar, but more complicated
equations have also been derived in Ref.@2# and later have
been extended in Refs.@3–6# in order to take into accoun
higher perturbation expansion terms.

In order to demonstrate how the dc bias fieldE0 affects
the ac nonlinear response, we present here, as an exa
the first harmonic componentx1

1(v) as a function of the bias
field parameterj0 . The main features of this dc bias fie
effect are shown in Figs. 7 and 8, where the real and im
nary parts ofx1

1(v) are plotted as functions ofj andj0 for
vtD51, and in Figs. 9 and 10, where the spectra of Re$x1

1%
and Im$x1

1% are presented for 0<j0<10 andj55. As one
can see in these figures, the nonlinear effects arising from
increasing of the amplitudej of the ac field coupled with the
dc bias fieldE0 are very similar to those whenE0 is set equal

FIG. 3. Re$x3
1% ~third harmonic component! as a function of

log10(vtD) andj.

FIG. 4. The same as in Fig. 3 for Im$x3
1%.
ple,

i-

he

to zero~cf. Figs. 1 and 2!. However, the increase of the bia
field parameterj0 results in a further decrease of the r
sponse and in its shift to higher frequencies. The half-wi
of Im$x1

1% enlarges with increasingj0 as well. One can also
see in Figs. 7–10 that the decrease of Re$x1

1% and Im$x1
1% with

increasing the amplitude of the dc bias field is in seve
times more than that due to the ac field. For a small ac fi
(j!1) superimposed to a strong dc bias field (j0@1), our
results are in complete agreement with those of Ref.@8#,
where the ac nonlinear response has been investigate
using the perturbation approach. The above conclusion
relation with these dc field effects can also be applied
higher harmonics.

In conclusion, the present theory may be applied to
interpretation of experimental data on nonlinear dielec
relaxation. We remark that until now two kinds of nonline
response experiments have been carried out, namely, w
~i! either a strong ac field alone~for example, Refs.@21,22#!
or ~ii ! a weak ac field superimposed on a strong dc bias fi
~e.g., Refs.@23–25#! were applied to the dielectric liquids

FIG. 5. Re$x5
1% ~fifth harmonic component! as a function of

log10(vtD) andj.

FIG. 6. The same as in Fig. 3 for Im$x5
1%.
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Although the applied fields in these experiments were h
enough (>106 V/m) to observe nonlinear effects, th
strengths of the fields were still weak to allow one to use
nonlinear response equations obtained in the context of
perturbation approach. Comparison of the experimental d
with the results of the perturbation theory@2–5# has demon-
strated@23,24,26# that they are in agreement. Thus, the
sults predicted by the theory developed here are also in
cordance with those experimental data. As the the
presented is applicable to arbitrary ac field strengths, it a
provides a theoretical basis for comparison with nonlin
response experiments in high fields, where the perturba
methods are no longer valid. It should be noted that so
molecular dynamics simulation data for systems of dipo
molecules in strong ac fields are also available~e.g., Ref.
@27#!. The use of computer experiment data is preferable
testing a nonlinear theory as it is much easier~than in real
experiments! to achieve values of the nonlinear parame
j>1. For example, Evans@27# reported the computer simu
lation data on the orientational relaxation of dipolar m
ecules in a strong ac field atj512. Unfortunately, these dat

FIG. 7. Re$x1
1% as a function ofj andj0 for vtD51.

FIG. 8. The same as in Fig. 7 for Im$x1
1%.
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were only obtained for the short~picosecond! time scale,
which corresponds to the frequency range, where the mo
under consideration is not applicable~it is valid in the low
frequency region only,vtD<1) as inertial effects are ig
nored. In order to take into account the inertia of the m
ecules and to extend the area of the applicability of
theory to higher frequencies one should consider the ine
Fokker-Planck equation for the rotational Brownian moti
in phase space. This will allow us to consider the nonlin
effect in the whole frequency range of dipolar polarizati
~up to;5 THz!. We are going to extend our approach in th
direction elsewhere.

Thus, in the context of the noninertial rotational diffusio
model the steady state ac nonlinear response of an ense
of rigid polar molecules in strong superimposed ac and
bias fields can be evaluated from Eqs.~16! and~17! in terms
of a matrix continued fraction. The method of the solution
infinite hierarchies ofmultiterm recurrence relations base
on matrix continued fractions, which we have presented
quite general and can also be used for calculating station
solutions of analogous nonlinear response problems, wh

FIG. 9. Re$x1
1% as a function of log10(vtD) and j0 for j55

~strong nonlinear regime!.

FIG. 10. The same as in Fig. 9 for Im$x1
1%.
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time-dependent stimuli in high ac external fields are cons
ered in the context of the Brownian motion of a particle in
external potential. For example, the approach presented
also be applied to the calculation of the dynamic Kerr eff
ac response ofpolar and anisotropically polarizablemol-
ecules@6# and to the evaluation@28# of the nonlinear imped-
ance of a microwave-driven Josephson junction@16,29# ~as
known, the dynamics of these systems is governed by v
similar recurrence equations!.

Note added in proof.Some time after this paper was se
for publication, Professor Yu. L. Raikher brought our atte
tion to the publications@30,31#, where the problem of the
dynamic Kerr effect ofrigid dipolar molecules in a strong a
electric field was treated by means of a numerical solution
Eq. ~3! for j050, which is the particular case of our prob
lem. As is well known, the analysis of the measurements
the ac results of Refs.@30# and @31# @where the expectation
value of the second Legendre polynomial^P2(cosq)&(t) was
evaluated# may be considered to those obtained in t
present paper. Furthermore, an analytical method, which
developed in@30,31# for the evaluation of the asymptoti
behavior of the ac Kerr effect response in the high freque
(vtD@1) and strong ac field (j@1) limits, can also be ap
plied to the evaluation of the ac nonlinear dielectric
sponse. In those limits, the reorientation of the particle
determined by the balance of viscous and field-indu
torques as one may ignore the effects of the random tor
acting on the particle. Thus, one may use the dynamic
scription for the rotation of the particle instead of the sta
,

h.

.

A

-

an
t

ry

-

f

f
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y

-
s
d
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e-
-

tical one. In the context of this dynamic description, the b
havior of the particle is governed by the following equati
@30,31#:

q̇~ t !52
j cosvt

2tD
sinq~ t !,

which has an analytical solution

cosq~ t !52S 11expF2
j

vtD
sinvt G tan2Fq~0!

2 G D 21

21,

depending on the initial orientation of the particleq~0!. As-
suming that att50 the particles were oriented randomly, w
find, just as was done for̂P2(cosq)&(t) in @30,31#, a simple
equation for̂ cosq&(t) in Eq. ~7!, viz.,

^cosq&~ t !5cothz~ t !2
z~ t !

sinh2z~ t !
,

wherez(t)5(j/2vtD)/sinvt.
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